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Kotas conditionals are used to define six pairs of disjunction- and conjunction-
like operations on orthomodular lattices. Although five of them necessarily differ
from the lattice operations on elements that are not compatible, they coincide
with the lattice operations on all compatible elements of the lattice and they
define on the underlying set a partial order relation that coincides with the original
one. Some of the new operations are noncommutative on noncompatible elements,
but this does not exclude the possibility to endow them with a physical
interpretation. The new operations are in general nonassociative, but for some
of them a Foulis–Holland-type theorem concerning associativity instead of
distributivity holds. The obtained results suggest that these new operations can
serve as alternative algebraic models for the logical operations of disjunction
and conjunction.

1. INTRODUCTION

Garrett Birkhoff and John von Neumann, the founding fathers of quantum
logic theory, were not very satisfied with their own proposal of unrestricted
treating of lattice operations (meet and join) as algebraic models of logical
operations of conjunction and disjunction of experimentally testable proposi-
tions about quantum objects. They were aware of the problems that are bound
to emerge when considered propositions are not compatible and they wrote
in their historic 1936 paper (Birkhoff and von Neumann, 1936):

It is worth remarking that in classical mechanics, one can easily define the meet
or join of any two experimental propositions as an experimental proposition—
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1 Departement wiskunde, Vrije Universiteit Brussel, 1050 Brussel, Belgium; e-mail:
bdhooghe@vub.ac.be.

2 Instytut Matematyki, Uniwersytet Gdański, 80-952, Gdańsk, Poland; e-mail:
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simply by having independent observers read off the measurements which either
proposition involves, and combining them logically. This is true in quantum
mechanics only exceptionally—only when all the measurements involved com-
mute (are compatible).

On the other hand, Birkhoff and von Neumann’s choice of representing
conjunctions and disjunctions by meets and joins is natural and obvious as
far as compatible propositions are concerned: If we construct a Lindenbaum–
Tarski algebra of a theory that is governed by the laws of classical logic,
then meets and joins in this Boolean algebra really do represent, respectively,
conjunctions and disjunctions of propositions. On noncompatible proposi-
tions, however, the interpretational problems remain. We offer a solution for
this by defining six pairs ("i , Gi) of operations (i 5 1, . . . , 6) on an orthomodu-
lar lattice (OML) which can be interpreted as new models of conjunction
and disjunction of two propositions. They are introduced using Hardegree’s
papers on physical conditionals on an OML (Hardegree, 1974, 1979, 1981)
in which a set of generalized conditionals is discussed. By modifying these
generalized conditionals, we define new pairs of disjunction-like (a Gi b) and
conjunction-like (a "i b) operations. Actually, one new pair of the connectives
found with this procedure was first introduced in (Pykacz, n.d.). Although
they were introduced in another way, i.e., by making use of formal Mackey
(1963) decompositions, these connectives combined with the Hardegree’s
results inspired the introduction of the operations put forward in this paper.

Many of the properties of pairs of disjunction- and conjunction-like
operations are the same as properties of join and meet; moreover, a Gi b and
a "i b coincide, respectively, with join a ∨ b and meet a ∧ b whenever a and
b are compatible. They also define on the underlying set a partial order
relation which coincides with the original one. Therefore, it is possible to
treat a Gi b and a "i b as new algebraic models of disjunction and conjunction
of the propositions represented by a and b. We give some arguments that
such an interpretation of these operations is plausible in spite of the fact that
some properties of Gi and "i are rather counterintuitive. However, since on
compatible propositions the new operations coincide with the traditional ones
and they give rise to the same partial order structure, we argue that from the
operational point of view all connectives can be treated on the same level
as the traditional ones.

In order to keep the size of this paper within reasonable limits, we quote
only the most important results for the purpose of this paper; more extensive
results will be published elsewhere (D’Hooghe, n.d., Pykacz, n.d.). The reader
interested in all the details, especially, the proofs of all quoted theorems, is
referred to these papers. It should be also stressed that some of the operations
considered in the present paper already appeared, in various contexts, in
general different from ours, in the literature and some of their properties
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quoted in the present paper were already studied. This, in particular, concerns
Kröger’s results in the context of Boolean skew lattices quoted in Beran’s
(1985) book, Sections VII 6 and VII 7, with respect to our Theorems 4, 5,
and 7 (for G2 and "2), Roman and Rumbos’ (1991) results concerning our
Theorems 4 and 5 for the operation "2, or results of Dorfer et al. (1996) and
Länger (1998) concerning the operation "3 in the contexts of our Theorems
5, 6, and 7. For the detailed references and discussion concerning these facts
see our already mentioned papers. The definitions of all relevant notions
concerning orthomodular lattices can be found in any of numerous textbooks
on quantum logic, for example, Beltrametti and Cassinelli (1981), Kalmbach
(1983), or Beran (1985).

2. CONNECTIVES DERIVED FROM KOTAS CONDITIONALS

2.1. Kotas Conditionals on Orthomodular Lattices

Let + be an orthomodular lattice (OML), with the least element 0 and
greatest element 1. If + represents the lattice of properties of a classical
system, it is Boolean and the lattice operations of orthocomplement, meet,
and join of element(s) of the lattice represent, respectively, the negation,
conjunction, and disjunction of propositions that express these properties.
However, in classical logic there exists yet a fourth operation on a pair of
elements which does not have an unambiguous analog in the theory of OML.
This operation is the implication (conditional, horseshoe) denoted a . b. To
make the distinction between the classical conditional ., ‘if a, then b’, and
the lattice operation we will write the latter as a → b. If we represent two
propositions of a classical logic by elements a and b of the distributive
complemented lattice (Boolean algebra) +, their disjunction is represented
by the join a ∨ b of these two elements. In classical logic the sentence ‘if
a, then b’ is the same as saying ‘(not a) or b’. In lattice-theoretic terms this
means that the classical conditional is represented by a → b 5 a8 ∨ b. It is
important to stress that the conditional a → b is an element of the lattice,
associated with the couple (a, b) via the formula a → b 5 a8 ∨ b, and that
it is not expressing any truth value of the implication ‘if a, then b’. Using
the definition a → b 5 a8 ∨ b for the classical conditional, one can prove
a list of properties which, alternatively, could be used as the defining properties
for the classical conditional. The explicit expression a → b 5 a8 ∨ b follows
then as a theorem. Although the lattice-theoretic counterpart of the conditional
is unambiguously defined by such a set of properties in a Boolean algebra,
in the case of a nondistributive OML, this is not the case.

We use as the defining property for a general conditional on an OML
the requirement that on compatible propositions (which define a distributive
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subalgebra of the OML; see, e.g., Beltrametti and Cassinelli, 1981) the condi-
tional should coincide with the conditional of a Boolean algebra: if a and b
are compatible (abbreviated aCb), then a → b 5 a8 ∨ b. It was shown by
Kotas (1967) that there are only six polynomials ci(a, b), i 5 1–6, on the
OML which satisfy this condition, namely:

1. c1(a, b) [ a8 ∨ (a ∧ b)
2. c2(a, b) [ (a8 ∧ b8) ∨ b
3. c3(a, b) [ (a ∧ b) ∨ (a8 ∧ b) ∨ (a8 ∧ b8)
4. c4(a, b) [ (a ∧ b) ∨ (a8 ∧ b) ∨ ((a8 ∨ b) ∧ b8)
5. c5(a, b) [ (a ∧ (a8 ∨ b)) ∨ (a8 ∧ b) ∨ (a8 ∧ b8)
6. c6(a, b) [ a8 ∨ b

and the following holds: a # b ⇔ ci (a, b) 5 1 for i 5 1–5.

2.2. New Operations Derived from Kotas Conditionals

As we already mentioned, the conditional in classical logic can be
defined by the disjunction of propositions (NOT a) and b, which in lattice-
theoretic terms corresponds with the join of a8 and b. Alternatively, the join
of two elements can be defined by the classical conditional: a ∨ b [ a8 →
b. Analogously, we will now define disjunction-like operations on an OML
using the six conditionals quoted in the previous section. The disjunction-
like operation derived from the conditional ci will be denoted by Gi , in other
words the ith disjunction-like operation is defined by a Gi b [ ci (a8, b), and
we obtain:

1. a G1 b [ a ∨ (a8 ∧ b)
2. a G2 b [ (a ∧ b8) ∨ b
3. a G3 b [ (a8 ∧ b) ∨ (a ∧ b) ∨ (a ∧ b8)
4. a G4 b [ (a8 ∧ b) ∨ (a ∧ b) ∨ ((a ∨ b) ∧ b8)
5. a G5 b [ (a8 ∧ (a ∨ b)) ∨ (a ∧ b) ∨ (a ∧ b8)
6. a G6 b [ a ∨ b

For each operation the corresponding conjunction-like operation "i is
defined via the De Morgan law a "i b [ (a8 Gi b8)8 and we get:

1. a "1 b [ a ∧ (a8 ∨ b)
2. a "2 b [ (a ∨ b8) ∧ b
3. a "3 b [ (a8 ∨ b) ∧ (a ∨ b) ∧ (a ∨ b8)
4. a "4 b [ (a8 ∨ b) ∧ (a ∨ b) ∧ ((a ∧ b) ∨ b8)
5. a "5 b [ (a8 ∨ (a ∧ b)) ∧ (a ∨ b) ∧ (a ∨ b8)
6. a "6 b [ a ∧ b

Obviously, by definition, each pair of operations (Gi , "i) obeys De Morgan
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identities for i 5 1–6. Although in a distributive logic there is no ambiguity
about which conditional to use if one wants to define the disjunction using
the conditional (since all six conditionals coincide with the classical condi-
tional on compatible elements), in a nondistributive OML the six conditionals
do not coincide with each other and in general they differ from the classical
conditional. As a consequence, in general the new disjunction-like operations
differ from each other and from the ordinary join on noncompatible elements.

It follows from the definition that operations G3, "3, G6, and "6 are commuta-
tive. The other operations are not commutative on all pairs of elements of
an OML. However, there is a ‘commutative duality’ between operations G1

and G2, and operations G4 and G5 (the same holds for the respective pairs of
conjunction-like operations "i , i 5 1, 2; 4, 5): a G1 b 5 b G2 a and a G4 b 5
b G5 a, which again follows directly from the definition.

3. NEW OPERATIONS VERSUS COMPATIBILITY OF
PROPOSITIONS

3.1. Old and New Operations versus Compatibility of Propositions

Close links between the operations Gi , "i and the lattice-theoretic opera-
tions of join and meet are established by the following

Theorem 1. Let + be an orthomodular lattice. For any a, b P + the
following conditions are equivalent, for i 5 1–5:

aCb (1)

a Gi b 5 a ∨ b (2)

a "i b 5 a ∧ b (3)

Since a # b implies that aCb, and aCa8, aC0, aC1, the following
properties are an immediate consequence of the previous theorem:

Theorem 2:

1. Gi and "i are idempotent: a Gi a 5 a, a "i a 5 a for i 5 1–6.
2. a "i 0 5 0, a "i 1 5 a, a Gi 0 5 a, a Gi 1 5 1 for i 5 1–6.
3. Gi and "i satisfy the law of excluded middle and the law of contradic-

tion, for i 5 1–6: a Gi a8 5 1, a "i a8 5 0.
4. Gi and "i satisfy the ‘orthomodular identity’ for i 5 1–6: if a # b,

then b 5 a Gi (a8 "i b).

Theorem 3. Gi and "i , i 5 1–6 are commutative on compatible
propositions.



646 D’Hooghe and Pykacz

3.2. Distributivity, Commutativity, and Associativity

Since the new operations resemble in many aspects lattice operations
on an OML it is not surprising that they are in general nondistributive, which
can be demonstrated of course only when the considered elements do not
belong to the same Boolean subalgebra of an OML. For example, let us
consider + 5 G12 represented in Fig. 1. The nondistributivity can then be
easily checked on G12, for instance,

a G3 (c "3 e) 5 a G3 (c ∧ e) 5 a G3 0 5 a ∨ 0 5 a

while

(a G3 c) "3 (a G3 e) 5 (a ∨ c) "3 0 5 b8 "3 0 5 b8 ∧ 0 5 0

and

a "3 (c8 G3 e) 5 a "3 (c8 ∨ e) 5 a "3 c8 5 a ∧ c8 5 a

while

(a "3 c8) G3 (a "3 e) 5 (a ∧ c8) G3 c8 5 a G3 c8 5 a ∨ c8 5 c8

Since in this example aCc, cCe, and aCc8, c8Ce, i.e., we were focusing,
respectively, on the elements c and c8, we see that no counterpart of the

Fig. 1.
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Foulis–Holland theorem (Foulis, 1962; Holland, 1963; see also Beltrametti
and Cassinelli, 1981, p. 128; Kalmbach, 1983, p. 25) holds for #3 and "3 and
the same can be checked for i 5 1, 2, 4, 5. Of course, because of Theorem
1, new operations applied only to noncompatible propositions may show
features by which they differ from traditional lattice operations join (G6) and
meet ("6), for example nonassociativity and noncommutativity. Noncommuta-
tivity for Gi , "i , i 5 1, 2, 4, 5, can also be demonstrated on G12, for instance,
for i 5 2: a G2 e 5 e, while e G2 a 5 a. If a and b are compatible, operations
"i , Gi (i 5 1, 2, 4, 5) are obviously commutative since in such a case they
coincide, respectively, with the traditional lattice operations of meet and join.
The converse statement is also true:

Theorem 4. a Gi b 5 b Gi a iff aCb for i 5 1, 2, 4, 5.

Corollary. a "i b 5 b "i a iff aCb for i 5 1, 2, 4, 5.

The general nonassociativity of operations Gi , "i for i 5 1, 2, 3, 4, 5 can
be checked on G12 as well, for example:

a G3 (b G3 e) 5 a G3 0 5 a ∨ 0 5 a

while

(a G3 b) G3 e 5 (a ∨ b) G3 e 5 c8 G3 e 5 c8 ∨ e 5 c8

and

a "3 (b "3 e) 5 a "3 c8 5 a ∧ c8 5 a

while

(a "3 b) "3 e 5 (a ∧ b) "3 e 5 0 "3 e 5 0 ∧ e 5 0

However, it is a surprising fact that although in general the new opera-
tions are nonassociative, a Foulis–Holland-type theorem concerning associa-
tivity instead of distributivity holds for some of them:

Theorem 5. If, in an orthomodular lattice, one of the elements a, b, c
is compatible with the other two, then {a, b, c} is an associative triple with
respect to both operations Gi and "i for i 5 1, 2, 3.

Theorem 5 facilitates attempts at interpreting Gi as OR and "i as AND
for i 5 1, 2, 3 in spite of the general lack of associativity of Gi and "i, for it
secures the unique meaning of propositions ‘a AND b AND c’ and ‘a OR b
OR c’ for all possible permutations of {a, b, c} when one of these experimental
propositions is simultaneously (but possibly separately) verifiable with the
remaining two, although the whole triple {a, b, c} does not have to belong
to the same Boolean subalgebra of an OML. More precisely, even if truth
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values of conjunctions and disjunctions of two of the pairs (a, b), (a, c), and
(b, c) have to be checked in different experiments while the truth value of
the conjunction and disjunction of the remaining pair of propositions cannot
be experimentally verified at all because these propositions do not belong to
the same Boolean subalgebra, nevertheless, the statements ‘a AND b AND
c’ and ‘a OR b OR c’ remain meaningful.

We did not prove the counterpart of Theorem 5 for i 5 4, 5. However,
since we found no counterexample, we suspect that it might hold true.

3.3 The New Operations versus Compatibility of Propositions

In Theorem 1 it was shown that each pair ("i , Gi) of new operations
coincides with the ordinary lattice-theoretic operations meet and join on and
only on compatible elements. This, however, did not exclude the possibility
that on noncompatible elements some new operations could coincide. This
possibility is excluded by the following theorem, which is a generalization
of Theorem 1:

Theorem 6. Let + be an orthomodular lattice. For any a, b P + the
following conditions are equivalent for i Þ j, i, j P {1, . . . , 6}:

aCb (18)

a Gi b 5 a Gj b (28)

a "i b 5 a "j b (38)

One might doubt whether this theorem is valid in the case of OMLs
that contain very few elements. However, notice that the smallest non-Boolean
OML, the so-called Chinese lantern or MO2 (see, e.g., Kalmbach, 1983,
p. 16) contains exactly six elements: 0 # a, a8, b, b8 # 1 (none of a, a8, b,
b8 being comparable). Thus we see that the number of elements in this
smallest non-Boolean OML is just big enough to allow Theorem 6 to
be valid and we indeed get, for example, a G1 b 5 a, a G2 b 5 b, a G3 b 5
0, a G4 b 5 b8, a G5 b 5 a8, and a G6 b 5 1. Therefore, each element of MO2
represents in this way exactly one disjunction-like operation. In a similar
way we can show that the same is true for the set of conjunction-like operations
"i , i 5 1–6. This demonstrates that even in the ‘minimal’ non-Boolean OML
MO2, which contains exactly the same amount of elements as there are
different pairs (Gi , "i) of disjunction- and conjunction-like operations, the
minimal number of elements of this OML does not prevent Theorem 6 from
being valid.
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4. MUTUAL DEFINABILITY OF OPERATIONS

The new operations Gi and "i , i 5 1, . . . , 5, were defined with the aid
of the lattice operations of join and meet, and the operation of orthocomple-
mentation. The natural question arises whether it is possible to go in the
opposite direction, i.e., to express the lattice operations of join and meet by
operations Gi and "i (and, possibly, orthocomplementation). The following
theorem answers this question in the positive.

Theorem 7. For any two elements a, b of an orthomodular lattice +

a ∨ b 5 (a8 "1 b) G1 a

5 a G2 (b "2 a8)

5 (a G3 b) G3 (a "3 b)

5 (a "3 b8) G3 b

5 (a8 "3 b) G3 a

5 (b G4 a) G4 a

5 a G5 (a G5 b)

a ∧ b 5 (a8 G1 b) "1 a

5 a "2 (b G2 a8)

5 (a G3 b) "3 (a "3 b)

5 (a G3 b8) "3 b

5 (a8 G3 b) "3 a

5 (b "4 a) "4 a

5 a "5 (a "5 b)

For G6, "6 the answer is of course trivial, since these operations coincide
with the traditional join and meet.

Of course, Theorem 7 allows one to express in many ways any of
the studied operations by (any of) the other(s) and orthocomplementation.
However, the following example, in which we express G1 by G3 and shows
that the obtained formulas might be rather lengthy:

a G1 b 5 {a G3 [(a G3 b)8 G3 a]}8 G3 a

It is an open question which of such formulas (if any) could be written in a
more economical way.
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5. POSSIBLE PHYSICAL AND LOGICAL INTERPRETATION
OF Gi AND "i

5.1. Partial Order Defined by the New Operations

It can be shown (Kotas, 1967) that the five conditionals ci , i 5 1–5,
satisfy the following condition:

a # b ⇔ ci (a, b) 5 1, i 5 1–5

which implies that the partial order relation # can be reconstructed from
each of these five conditionals. Since these conditionals were used in the
definition of the disjunction-like operations Gi , i 5 1–5, this means that the
partial order relation # can be defined via each disjunction-like operation
as follows:

a # b ⇔df a8 Gi b 5 1

This shows that there are two possibilities: (1) the partial order structure on
the OML is given and defines meet, join, and, as a consequence, all disjunc-
tion- and conjunction-like operations on the OML, or (2) one of the disjunc-
tion-like or conjunction-like operations Gi or "i , i 5 1–5, is given, from which
the partial order is constructed using the equation mentioned above and,
consequently, all remaining operations: join, meet, and the other disjunction-
like and conjunction-like operations, are defined. From the traditional join
and meet operations the partial order relation can also be deduced, but in a
slightly different way. In conclusion, each of the 12 operations Gi , "i , i 5 1,
. . . 6, is equally good to define the partial order relation of the lattice.

5.2. New Operations as Models of Logical Disjunction and
Conjunction

One of the operations studied in this paper, namely "2, was already
studied in a physical context by Roman and Rumbos (1991), who argued
that it might serve as a better model for the conjunction of two propositions
about a quantum system. However, Roman and Rumbos, who interpreted "2

on the lattice of projectors as yielding the ‘closest’ projector associated with
the composition of two, possibly noncommuting, projectors, did not reflect
a lot on the possible physical advantages or disadvantages of noncommutativ-
ity of this operation. We shall argue now that although all operations consid-
ered in this paper are operationally indistinguishable, the noncommutativity
of operations 1, 2, 4, and 5 opens new interpretational possibilities that do
not exist for operations 3 and 6.

Theorem 1 implies that we cannot distinguish between the lattice opera-
tions and the operations Gi and "i if we have access only to compatible elements
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of a lattice. According to the standard interpretation of (quantum) logics, i.e.,
orthomodular lattices associated to (quantum) physical systems, elements of
a logic represent experimentally verifiable propositions about the associated
physical system. One of the crucial differences between classical physical
systems (whose logics are Boolean algebras) and quantum systems is that for
a quantum system there do exist propositions, represented by noncompatible
elements of a logic, that cannot be verified simultaneously. However, since
all comparable elements of a lattice are compatible, in order to gain knowledge
about the whole order-theoretic structure of a set of propositions, it suffices
to perform experiments involving only pairs of compatible propositions:
simultaneous verification of noncompatible propositions is neither possible
from the experimental nor necessary from the theoretical point of view. In
view of these considerations and also of Theorem 1, it seems that we cannot
distinguish between the new operations and the traditional lattice operations
of meet and join by making real experiments involving pairs of propositions,
so it is a matter of choice which ones among these operations are better
suited to be used as algebraic models of conjunctions and disjunctions of
propositions about quantum systems. Therefore, from the operational point
of view all six pairs of operations are equivalent and it is meaningless to
argue which pair of connectives is the ‘most natural’ one. Nevertheless
although the noncommutativity of some of these operations could be consid-
ered as a mathematical disadvantage, from a physical point of view this feature
makes them especially interesting. The noncommutativity of operations 1,
2, 4, and 5 could serve as a tool to absorb the impossibility of simultaneous
verification of some properties of quantum systems into the logicoalgebraic
formulation of quantum theory and could allow one to describe in a natural
way ‘sequential’ tests in which we verify two (possibly noncompatible)
properties of a quantum system not simultaneously, but one after another. In
such a sense, paraphrasing George Orwell’s Animal Farm, we could say
about the six pairs of disjunction- and conjunction-like operations on OMLs
studied in this paper that from an operational point of view, “All operations
are equal, but some of them are more equal than others.”
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